

Autonomous Systems with Inputs and Outputs: Definition

State Equations

$$\dot{x} = f(x, u)$$
$$y = h(x, u)$$

- State $x \in \mathbb{R}^n$, input $u \in \mathbb{R}^m$, output $y \in \mathbb{R}^m$
- f is locally Lipschitz, h continuous
- f(0,0) = 0 and h(0,0) = 0

Goal

- Study Lyapunov stability and input/output stability of such systems
- Introduce concept of passivity to describe "energy storage" of such systems
- Develop feedback control methods to achieve stability

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Transfer Block

Gap 1

Department

Application of Lyapunov's Stability Theory: Magnetic Valve

Force balance

Gap 2

Application of Lyapunov's Stability Theory: Magnetic Valve

State Equations

• State Variables: $x_1 = z$, $x_2 = \dot{z}$, $x_3 = i_L$, input: $u = U_0$

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \frac{1}{m} \left(\frac{1}{2} \frac{\partial L(x_1)}{\partial x_1} x_3^2 - cx_1 - dx_2 \right)$$

$$\dot{x}_3 = \frac{1}{L(z)} \left(u - Rx_3 - \frac{\partial L(x_1)}{\partial x_1} x_3 x_2 \right)$$

$$y = x_3$$

Energy Function

$$V(x) = \frac{1}{2}(cx_1^2 + mx_2^2 + L(x_1)x_3^2)$$

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Autonomous Systems with Inputs and Outputs Application of the Lyapunov Stability Theory Input/Output Stability Passivity

Application of Lyapunov's Stability Theory: Magnetic Valve

Stability Analysis

$$\dot{V}(x) = \begin{bmatrix} cx_1 + \frac{1}{2} \frac{\partial L(x_1)}{\partial x_1} x_3^2 & mx_2 & L(x_1)x_3 \end{bmatrix} f(x, u)$$

Gap 3

Department

Equilibrium Point for u = 0

$$x_1 = x_2 = x_3 = 0$$

 \Rightarrow Asymptotic stability according to Corollary to La Salle's Theorem

Input/Output Stability: Notation

Linear Signal Spaces

• L₂-space: Set of all square integrable vector functions *u*

$$\int_0^\infty u^T(\tau)u(\tau)d\tau<\infty$$

• \mathcal{L}_2 -norm

$$||u||_{\mathcal{L}_2} = \sqrt{\int_0^\infty u^T(\tau) u(\tau) d\tau}$$

• Input/Output Mapping

$$H: u \to y: \mathcal{L}_2^m \to \mathcal{L}_2^p$$

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

• *u*: input, *y*: output

Department

Input/Ouput Stability: Definition

Definition (Finite-Gain Input/Output Stability)

An input/output mapping $H : \mathcal{L}_2^m \to \mathcal{L}_2^p$ is finite-gain \mathcal{L}_2 -stable if there exists a $\gamma > 0$ and $\beta \ge 0$ such that

$$|y_t||_{\mathcal{L}_2} = ||Hu_t||_{\mathcal{L}_2} \le \gamma ||u_t||_{\mathcal{L}_2} + \beta$$

for all $u \in \mathcal{L}_2^m$ and $t \in [0, \infty)$. Here, $||y_t||_{\mathcal{L}_2} = \sqrt{\int_0^t y^T(\tau)y(\tau)d\tau}$.

Gap 5

Department

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Department of Mechatronics Engineering – Çankaya University

Klaus Schmidt

Passivity: Electric Circuit

State Equations

• State variables: $x_1 = i_2$, $x_2 = u_3$, input: $u = U_0$, output $y = i_0$

$$\dot{x}_1 = \frac{1}{L}(u - h_2(x_1) - x_2)$$
$$\dot{x}_2 = \frac{1}{C}(x_1 - h_3(x_2))$$
$$y = x_1 + h_1(u)$$

System Energy

$$V(x) = \frac{1}{2}(Lx_1^2 + Cx_2^2)$$

Passivity: Different Cases **Case 1:** $h_1 = h_2 = h_3 = 0$ \Rightarrow Circuit is lossless **Case 2:** $x_1h_2(x_1)+x_2h_3(x_2)$ is positive semidefinite and *uh*1(*u*) is positive definite \Rightarrow Circuit is input strictly passive **Case 3:** $h_1 = 0$, h_3 is positive semi-definite and *yh*₂(*y*) is positive definite \Rightarrow Circuit is output strictly passive $uh_1(u)$ is positive definite and Case 4: $x_1h_2(x_1) + x_2h_3(x_2)$ is positive definite \Rightarrow Circuit it state strictly passive Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

Passivity: Definition

Definition (Passivity)

 $\dot{x} = f(x, u), \qquad x \in \mathbb{R}^n, u \in \mathbb{R}^m$ $y = h(x, u) \qquad y \in \mathbb{R}^m$

is said to be passive if there exists a continuously differentiable positive semi-definite function V(x) (called the storage function) such that

$$u^T y \ge \dot{V}(x) = \frac{\partial V(x)}{\partial x} f(x, u), \quad \forall (x, u) \in \mathbb{R}^n \times \mathbb{R}^n$$

The system is called

- lossless: $u^T y = \dot{V}(x)$
- input strictly passive: $u^T y \ge \dot{V}(x) + u^T \varphi(u)$ and $u^T \varphi(u)$ pos. def.
- output strictly passive: $u^T y \ge \dot{V}(x) + y^T \varphi(y)$ and $y^T \varphi(y)$ pos. def.
- strictly passive: $u^T y \ge \dot{V}(x) + \varphi(x)$ and $\varphi(x)$ pos. def.

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Autonomous Systems with Inputs and Outputs Application of the Lyapunov Stability Theory Input/Output Stability Passivity

Passivity: Input/Output Stability

Lemma (Input/Output Stability)

If the system

 $\dot{x} = f(x, u), \qquad x \in \mathbb{R}^n, u \in \mathbb{R}^m$ $y = h(x, u) \qquad y \in \mathbb{R}^m$

is output strictly passive with $u^T y \ge \dot{V}(x) + \delta y^T y$ for some $\delta > 0$, then it is finite-gain \mathcal{L}_2 -stable and its \mathcal{L}_2 -gain is less than or equal to $1/\delta$.

Magnetic Valve Example

Gap 8

Department

\Rightarrow System is input/output stable $\Rightarrow \mathcal{L}_2$ -gain is less or equal to 1/R

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Passivity: Lyapunov Stability

Lemma (Lyapunov Stability)

Consider the system

$$\dot{x} = f(x, u), \qquad x \in \mathbb{R}^n, u \in \mathbb{R}^m$$

 $y = h(x, u) \qquad y \in \mathbb{R}^m$

with a positive definite storage function V(x). If the system is passive, then the origin of $\dot{x} = f(x, 0)$ is stable.

Magnetic Valve Example

Gap 9

Department

 \Rightarrow Origin of $\dot{x} = f(x, 0)$ is stable according to Lyapunov

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Autonomous Systems with Inputs and Outputs Application of the Lyapunov Stability Theory Input/Output Stability Passivity

Passivity: Lyapunov Asymptotic Stability

Definition (Zero-state Detectability)

The system	$\dot{x}=f(x,u),$	$x \in \mathbb{R}^n, u \in \mathbb{R}^m$
	y = h(x, u)	$y \in \mathbb{R}^m$

is locally (globally) zero-state detectable if there exists a neighborhood \mathcal{D} $(\mathcal{D} = \mathbb{R}^n)$ of x = 0 such that for any trajectory starting in \mathcal{D}

$$u \equiv 0$$
 and $y \equiv 0 \Rightarrow \lim_{t \to \infty} x(t) = 0$

Lemma (Lyapunov Asymptotic Stability)

Consider the system $\dot{x} = f(x, u), \qquad x \in \mathbb{R}^n, u \in \mathbb{R}^m$ $y = h(x, u) \qquad y \in \mathbb{R}^m$

with a positive definite storage function V(x). If the system is strictly passive or output strictly passive and zero-state detectable, then the origin of $\dot{x} = f(x, 0)$ is asymptotically stable.

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Passivity: Asymptotic Stability of Magnetic Valve

Corollary to La Salle's Theorem

Gap 10

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Autonomous Systems with Inputs and Outputs Application of the Lyapunov Stability Theory Input/Output Stability Passivity

Passivity: Asymptotic Stability of Magnetic Valve

Corollary to La Salle's Theorem

Gap 11

Department

\Rightarrow Origin of magnetic value is globally asymptotically stable