Nonlinear Systems and Control

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

Master Course in Electronic and Communication Engineering Credits (3/0/3)

Webpage: http://ECE564.cankaya.edu.tr

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Invariance Principle

Invariance Principle: Motivation

Asymptotic Stability Theorem: Shortcomings

- Requires that $\dot{V}(x)$ is negative definite
- Analysis assumes that x_1, x_2, \ldots, x_n are independent variables
- In reality, x_1, x_2, \ldots, x_n are related by the nonlinear system equations $\dot{x} = f(x)$

\Rightarrow Analysis can be overly conservative

Illustration: Pendulum with Friction

Gap 1

Department

Topics Covered

Invariance Principle: Motivation

Illustration: Pendulum with Friction

Gap 2

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Invariance Principle

Topics Covered

Department

Invariance Principle: Set Definitions

Definition (Invariant Set)

A set *M* is said to be an *invariant set* with respect to the autonomous system $\dot{x} = f(x)$ if

 $x(t_0) \in M \Rightarrow x(t) \in M$ for all $t \in \mathbb{R}$

Remark

• Trajectories that start in an invariant set *M* stay in *M* for all times

Example

• Each equilibrium point is an invariant set

<u>Illustration</u>

Invariance Principle: Set Definitions

Definition (Limit Set)

Let x(t) be a trajectory of an autonomous system $\dot{x} = f(x)$. The set N is called the *limit set* of x(t) if for any point $p \in N$, there exists a sequence $\{t_n\}$ of times with $t_n \in [0, \infty)$ and such that

$$\lim_{n\to\infty}||x(t_n)-p||=0$$

<u>Illustration</u>

Gap 4

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Invariance Principle

Topics Covered

Department

Invariance Principle: Relevant Properties

Lemma (Boundedness)

If the solution x(t) of the autonomous system $\dot{x} = f(x)$ for some initial condition $x(t_0)$ is bounded for all $t > t_0$, then its limit set N is (i) bounded, (ii) closed and (iii) non-empty. Moreover, $\lim_{t\to\infty} x(t) \in N$.

Lemma (Invariance)

The limit set N of a solution x(t) of the autonomous system $\dot{x} = f(x)$ for some initial condition $x(t_0)$ is invariant with respect to $\dot{x} = f(x)$.

<u>Illustration</u>

Invariance Principle: La Salle's Theorem

Theorem (La Salle)

Let $V : \mathcal{D} \to \mathbb{R}$ be a continuously differentiable function and assume that

(i) $M \subset \mathcal{D}$ is a compact set invariant with respect to $\dot{x} = f(x)$

(ii) $\dot{V}(x) \leq 0$ for all $x \in M$

(iii)
$$E : \{x \in M | V(x) = 0\}$$
 contains all points in M where $V(x) = 0$

(iv) N is the largest invariant set in E

Then, any solution starting in M approaches N as $t \to \infty$

Gap 6

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Invariance Principle

Topics Covered

Department

Invariance Principle: La Salle's Theorem

Proof

Invariance Principle: La Salle's Theorem

Proof

Gap 8 Klaus Schmidt Department

Invariance Principle

Topics Covered

Invariance Principle: Discussion

Department of Mechatronics Engineering - Çankaya University

Extensions of Lyapunov Stability Theory

- *V*(*x*) only needs to be continuously differentiable but not positive definite
- La Salle's theorem also applies to limit sets and not only to equilibrium points

\Rightarrow La Salle for example also captures limit cycles!

Verification of the Conditions

- (i) *M* exists for example if V(x) is positive definite and $\dot{V}(x) \leq 0$
- (ii) Straightforward computation of $\dot{V}(x)$
- (iii) Straightforward computation by inspection of $\dot{V}(x)$
- (iv) Determine all points in E that fulfill $\dot{x} = f(x)$

Gap 9

Invariance Principle: Example

Example for La Salle's Theorem

$$egin{aligned} \dot{x}_1 &= x_2 + x_1 ig(eta^2 - x_1^2 - x_2^2ig) \ \dot{x}_2 &= -x_1 + x_2 ig(eta^2 - x_1^2 - x_2^2ig), \quad eta \in \mathbb{R} \end{aligned}$$

Equilibrium Point

$$x_1 = x_2 = 0$$

Limit Cycle

$$x_1^2 + x_2^2 = \beta^2$$

System Equations on Limit Cycle

 $\dot{x}_1 = x_2$

$$\dot{x}_2 = -x_1$$

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Invariance Principle

Invariance Principle: Example

Example for La Salle's Theorem

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Topics Covered

Department

Invariance Principle: Corollary

Corollary (Equilibrium Point)

The equilibrium point x = 0 of the autonomous system $\dot{x} = f(x)$ is asymptotically stable if there exists a function $V : \mathcal{D} \to \mathbb{R}$ such that

- (i) V(x) is positive definite for all $x \in D$ and $0 \in D$
- (ii) V(x) is negative semi-definite in a bounded region $M \subseteq \mathcal{D}$
- (iii) $\dot{V}(x)$ does not vanish identically along any trajectory in M other than the null solution x = 0

Relation to La Salle's Theorem

- (i) and (ii) in the corollary imply (i) and (ii) in La Salle's theorem
- (iii) in the corollary implies that N only contains x = 0 in La Salle's theorem

\Rightarrow Convergence to the equilibrium point

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Invariance Principle

Invariance Principle: Example

Pendulum with Friction

Gap 11

Department

Topics Covered

Topics Covered up to Now

Overview

- Existence of solutions to nonlinear ordinary differential equations
- Equilibrium points
- Analysis of nonlinear systems
 - Stability analysis by linearization
 - Phase plane analysis
 - Limit cycles
- Describing functions and harmonic balance
- Lyapunov stability theorems
- Invariance principle and La Salle's theorem
- Extensions to stability analysis
 - Global asymptotic stability
 - Region of Attraction
 - Instability

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University Department