Nonlinear Systems and Control Lecture 7

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

Master Course in Electronic and Communication Engineering Credits (3/0/3)

Webpage: http://ECE564.cankaya.edu.tr

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Variable Gradient Method

Region of Attraction

Variable Gradient Method: Procedure

Determine Gradient of V(x)

$$\nabla V(x) = \frac{\partial V(x)}{\partial x} = g(x) = \begin{bmatrix} g_1(x) & \cdots & g_n(x) \end{bmatrix}$$

- Guess structure of g(x) with free parameters
- Evaluate $\dot{V}(x) = \nabla V(x)f(x) = g(x)f(x)$ and choose free parameters such that $\dot{V}(x)$ is negative (semi-) definite

Compute V(x)

Klaus Schmidt

• Solve partial differential equation $\frac{\partial V(x)}{\partial x_1} = g_1(x) \cdots \frac{\partial V(x)}{\partial x_n} = g_n(x)$ Condition for g(x)

$$\begin{bmatrix} \frac{\partial g_1(x)}{\partial x_1} & \dots & \frac{\partial g_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n(x)}{\partial x_1} & \dots & \frac{\partial g_n(x)}{\partial x_n} \end{bmatrix}$$

must be symmetric

Department

Instability

Department of Mechatronics Engineering – Çankaya University

Variable Gradient Method: Example

Example

Gap 1

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Variable Gradient Method

Region of Attraction

Instability

Department

Variable Gradient Method: Example

Example

Gap 2

Region of Attraction: Motivation

Lyapunov Asymptotic Stability

- Domain $\mathcal{D} \subset \mathbb{R}^n$
- V(x) is positive definite in \mathcal{D}
- *V*(x) is negative definite in *D* ⇒ No global asymptotic stability
 ⇒ Existence of subset of *D* where trajectories converge

Illustration Gap 3

Definition (Region of Attraction)

Consider an autonomous nonlinear system $\dot{x} = f(x)$ with an asymptotically stable equilibrium point x_e and denote the trajectory with initial condition x_0 as $x(t, x_0)$. The region of attraction of x_e is

$$\mathcal{R}_{\mathrm{A}} = \{x_0 \in \mathcal{D} | x(t, x_0)
ightarrow x_{\mathrm{e}} \text{ as } t
ightarrow \infty\}$$

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Variable Gradient Method

Region of Attraction

Instability

Department

Region of Attraction: Theorem

Theorem (Region of Attraction)

Consider an autonomous nonlinear system $\dot{x} = f(x)$ with an asymptotically stable equilibrium point x_e . Let $V : \mathcal{D} \to \mathbb{R}$ be continuously differentiable. If (i) $M \subset \mathcal{D}$ is a compact invariant set with $x_e \in M$

(ii) $\dot{V}(x) < 0$ for $x \in M - \{x_e\}$ and $\dot{V}(x_e) = 0$

then, $M \subseteq \mathcal{R}_A$.

Klaus Schmidt

Estimation of Region of Attraction <u>Illustration</u>

- Find region D where V(x) is positive definite and V(x) is negative definite
- Determine $c = \min_{x \in \delta D} V(x)$ on border δD of region D

$$\Rightarrow \mathsf{Choose} \ M = \{x \in \mathcal{D} | V(x) \leq c\}$$

Illustration Gap 4

Region of Attraction: Example

Example

Gap 5

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Variable Gradient Method

Region of Attraction

Region of Attraction: Example

Example

Gap 6

Department

Instability

Instability: Theorem

Theorem (Chetaev)

Consider an autonomous nonlinear system $\dot{x} = f(x)$ with the equilibrium point $x_e = 0$. Let $V : \mathcal{D} \to \mathbb{R}$ be such that

- (i) V(0) = 0 and there is $x_0 \in \mathbb{R}^n$, arbitrarily close to x_e , and $V(x_0) > 0$
- (ii) $\dot{V}(x) > 0$ for all $x \in U = \{x \in \mathcal{D} | ||x|| \le \epsilon \ (\epsilon > 0) \text{ and } V(x) > 0\}$

Then, x_e is instable.

Explanation

 Trajectories that start arbitrarily close to x_e = 0 diverge from the origin
 ⇒ Instability of x_e Gap 7

Department

Instability

Department of Mechatronics Engineering - Çankaya University

Variable Gradient Method

Klaus Schmidt

Region of Attraction

Illustration

Instability: Example

Example

Gap 8