Nonlinear Systems and Control

Lecture 5

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

Master Course in Electronic and Communication Engineering Credits (3/0/3)

Webpage: http://ECE564.cankaya.edu.tr

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Stability: Basic Definition

System under Consideration

- Autonomous system: $\dot{x} = f(x)$, $f : \mathcal{D} \to \mathbb{R}^n$
- Domain $\mathcal{D} \subseteq \mathbb{R}^n$ is an open and connected set
- f is locally Lipschitz-continuous
- $x = x_e$ is an equilibrium point: $f(x_e) = 0$

Definition (Stability)

The equilibrium point $x = x_e$ of the autonomous system $\dot{x} = f(x)$ is said to be stable if for each $\epsilon > 0$, there is a $\delta > 0$ such that

$$|x(t_0) - x_{\mathrm{e}}|| < \delta \Rightarrow orall t \ge t_0 : ||x(t) - x_{\mathrm{e}}|| < \epsilon$$

 \Rightarrow If a trajectory starts close enough to the equilibrium point, then it will remain in a bounded neighborhood of the equioibrium point

Department

Klaus Schmidt		Dep
Klaus Schmidt Department of Mec	hatronics Engineering – Çankaya University	De
Klaus Schmidt Department of Mec	hatronics Engineering – Çankaya University	Dej
Klaus Schmidt Department of Mec	hatronics Engineering – Çankaya University	Dej
Klaus Schmidt Department of Mec	chatronics Engineering – Çankaya University	Dej
Klaus Schmidt Department of Mec Stability: Definition	Convergence	Dej
Stability: Definition The equility to be conv	Convergence (Convergence) orium point $x = x_{e}$ of the vergent if there is a $\delta_{1} > 0$	autonomous system $\dot{x} = f(x)$ is s) such that
Klaus Schmidt Department of Mec Stability: Definition The equility to be <i>conv</i>	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	autonomous system $\dot{x} = f(x)$ is s) such that $_1 \Rightarrow \lim_{t \to \infty} x(t) = x_{ m e}$
Stability: Definition The equilit to be <i>conv</i>	thatronics Engineering – Çankaya University Convergence (Convergence) brium point $x = x_e$ of the vergent if there is a $\delta_1 > 0$ $ x(t_0) - x_e < \delta$ ane Illustration	autonomous system $\dot{x} = f(x)$ is s) such that $_1 \Rightarrow \lim_{t \to \infty} x(t) = x_{\mathrm{e}}$
Stability: Definition The equilit to be <i>conv</i>	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	autonomous system $\dot{x} = f(x)$ is s) such that $f_1 \Rightarrow \lim_{t \to \infty} x(t) = x_e$

Phase Plane Illustration

Gap 1

Stability: Asymptotic Stability

Definition (Asymptotic Stability)

The equilibrium point $x = x_e$ of the autonomous system $\dot{x} = f(x)$ is said to be *asymptotically stable* if it is both stable and convergent.

Remark

- Asymptotic stability is desired in many applications
- Disadvantage: No information about rate of convergence
 ⇒ Slow convergence is usually undesired

Time Evolution

Gap 3

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Stability: Exponential Stability

Definition (Exponential Stability)

The equilibrium point $x = x_e$ of the autonomous system $\dot{x} = f(x)$ is said to be locally *exponentially stable* if there exist $\alpha, \lambda > 0$ such that

for all $t \ge 0$: $||x(t) - x_e|| \le \alpha ||x(t_0) - x_e||e^{-\lambda t}$

whenever $||x(t_0) - x_e|| < \delta$. It is said to be globally exponentially stable if the above condition holds for any $x \in \mathbb{R}^n$.

Remark

- Strongest stability condition in this lecture
- Implies asymptotic stability

```
Klaus Schmidt
```

Department of Mechatronics Engineering - Çankaya University

Stability: Example

Pendulum

- Mass m
- Friction torque: $T_{\rm f} = -k\dot{\theta}$
- Torque due to gravity: $T_{\rm g} = -mgl\sin\theta$
- Acceleration: $M_{\rm a} = -ml^2\ddot{ heta}$
- Torque balance: $ml^2\ddot{\theta} = -mgl\sin\theta - k\dot{\theta}$

State Space Model: $x_1 = \theta$ and $x_2 = \dot{\theta}$

 $\dot{X}_1 = X_2$

$$\dot{x}_2 = -\frac{g}{l} \sin x_1 - \frac{k}{m l^2} x_2$$

 \Rightarrow equilibrium point: $x_1 = x_2 = 0$

Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

Department

Department

Gap 4

Stability: Standardization

General Nonlinear Systems

- Multiple equilibrium points
- Each equilibrium point should be analyzed
- We perform stability analysis for standardized equilibrium point \Rightarrow Transfer each equilibrium point to the origin x = 0

Standardization of Stability Analysis

- Change of variables to move each $x_{\rm e}$ under consideration to the origin
- Consider $\dot{x} = f(x)$ and $f(x_e) = 0$
- Choose new variable $y = x x_e$ $\Rightarrow \dot{y} = \dot{x} = f(x) = f(y + x_e) =: g(y)$ $\Rightarrow g(0) = f(0 + x_e) = 0$

Stability: Standardization

Standardization of Stability Analysis

• New system equations: $\dot{y} = g(y)$ \Rightarrow Without loss of generality, we study stability of $\dot{y} = g(y)$ with $y_e = 0$ from now on

Example

Gap 5

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University Department