Nonlinear Systems and Control Lecture 3 Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

Master Course in Electronic and Communication Engineering Credits (2/2/3)

Webpage: http://ECE564.cankaya.edu.tr

Klaus Schmidt Department of Mechatronic Engineering – Çankaya University

Second-order Systems: Phase Plane Analysis

State Equations

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{bmatrix} = f(x), \quad x(0) = x_0, \ x \in \mathbb{R}^2$$
(1)

Phase Plane Analysis

- Visualization of trajectories for various initial conditions in the x₁-x₂ plane
- Assumption: IVP with x_0 has unique solution x(t)
- Assign vector with amplitude and direction of f(x') to each point x'
 ⇒ Vector x' + f(x') at point x'
 - \Rightarrow Vector field diagram for whole x_1 - x_2 plane
- Vector field diagram indicates shape of trajectories that pass each point $x' \in \mathbb{R}^2$

Department

Second-order Systems: Linear Case State Equations $\dot{x} = Ax, \quad x \in \mathbb{R}^2$ \Rightarrow Analyze different cases Different Real Eigenvalues $\lambda_1 \neq \lambda_2 \neq 0$ Gap 2

Real Eigenvalues λ_1, λ_2	
	Gap
$C_{\rm rest}$	
complex Eigenvalues $\lambda_{1,2} = \alpha \pm J\rho$	
complex Eigenvalues $\lambda_{1,2} = \alpha \pm J \beta$	Gap
complex Eigenvalues $\lambda_{1,2} = \alpha \pm J\rho$	Gap
complex Eigenvalues $\lambda_{1,2} = \alpha \pm J \beta$	Gap
complex Eigenvalues $\lambda_{1,2} = \alpha \pm J \beta$	Gap
complex Eigenvalues $\lambda_{1,2} = \alpha \pm J \beta$	Gap
Lomplex Eigenvalues $\lambda_{1,2} = \alpha \pm J \beta$	Ga
complex Eigenvalues $\lambda_{1,2} = \alpha \pm J \beta$	Gap
n Schrift	Gap

Second-order Systems: Hartman – Grobman Theorem

Linearization

• Consider linearization of $\dot{x} = f(x)$ around x_0

$$A(x_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} |_{x_0} & \frac{\partial f_1}{\partial x_2} |_{x_0} \\ \frac{\partial f_2}{\partial x_1} |_{x_0} & \frac{\partial f_2}{\partial x_2} |_{x_0} \end{bmatrix}$$

Theorem (Hartman – Grobman Theorem)

Assume that the eigenvalues of $A(x_0)$ are not on the $j\omega$ -axis. Then, for a neighborhood $\mathcal{U} \in \mathbb{R}^2$ with $x_0 \in \mathcal{U}$, there exists a continuous map $h: \mathcal{U} \to \mathbb{R}^2$ with a continuous inverse h^{-1} that takes trajectories of the nonlinear system $\dot{x} = f(x)$ onto trajectories of the linear system $\dot{x} = A(x_0)x$.

 $\Rightarrow \text{ If the eigenvalues of } A(x_0) \text{ do not lie on the imaginary axis, then the}$ $type of the equilibrium point <math>x_0$ can be deduced from $A(x_0)$ Klaus Schmidt Department of Mechatronic Engineering – Çankaya University Department

Example		
		Gap
aus Schmidt		Departm
aus Schmidt epartment of Mechatronic	Engineering – Çankaya University	Departm
aus Schmidt epartment of Mechatronic	Engineering – Çankaya University	Departm
aus Schmidt epartment of Mechatronic	Engineering – Çankaya University	Departm
aus Schmidt epartment of Mechatronic	Engineering – Çankaya University Systems: Linearization	Departm
aus Schmidt spartment of Mechatronic econd-order Example	Engineering – Çankaya University Systems: Linearization	Departm
aus Schmidt epartment of Mechatronic Second-order Example	Engineering – Çankaya University Systems: Linearization	Gap
aus Schmidt partment of Mechatronic	Engineering – Çankaya University Systems: Linearization	Gap
aus Schmidt epartment of Mechatronic	Engineering – Çankaya University Systems: Linearization	Gap
laus Schmidt epartment of Mechatronic	Engineering – Çankaya University Systems: Linearization	Gap
laus Schmidt epartment of Mechatronic	Engineering – Çankaya University Systems: Linearization	Gap

Oscillations: Definition

Definition

A nonlinear system is said to oscillate if it has a non-trivial periodic solution, that is, a trajectory x(t) such for some T > 0

$$x(t+T) = x(t), \quad \forall t \ge 0$$

Such trajectory x(t) is called a closed orbit and T is called the period.

Special Case: Linear System

 $\dot{x} = Ax$

- Oscillations if and only if the characteristic polynomial det(sl A) has purely imaginary eigenvalues
 - \Rightarrow Amplitude depends on initial condition
 - \Rightarrow Period depends on the eigenvalue location

Klaus Schmidt Department of Mechatronic Engineering – Çankaya University

Oscillations: Linear System

Example

Gap 7

Department

Practical Limitations

- Purely imaginary eigenvalues are difficult to achieve
- Either eigenvalues with negative real part (damped) or positive real part (instable)
 - \Rightarrow Oscillations are not structurally stable

Oscillations: Limit Cylces for Nonlinear Systems Example: Van der Pol Oscillator $\dot{x}_1 = x_2$ $\dot{x}_2 = -x_1 + \mu(1 - x_1^2)x_2, \quad \mu > 0$ • Appears for example in electrical circuits with vacuum tubes • Additional dynamics $\mu(1-x_1^2)x_2$ compared to linear oscillator \Rightarrow For $\mu = 0$, the oscillatory linear system is recovered • Phase plane analysis shows that all system trajectories converge to limit cycle \Rightarrow Structural stability: convergence to periodic solution in case of deviations from periodic solution Klaus Schmidt Department Department of Mechatronic Engineering - Çankaya University

Oscillations: Limit Cylces for Nonlinear Systems

Phase Plane Plot

Van-der Pol Oscillator

Linear System

Oscillations: Poincaré-Bendixson Theorem

Theorem

Let $\dot{x} = f(x)$ be a <u>two-dimensional</u> autonomous system with a continuously differentiable f in the domain $\mathcal{D} \subseteq \mathbb{R}^2$ and assume that

- 1. $\mathcal{R} \subseteq \mathcal{D}$ is a closed and bounded set without equilibrium points of $\dot{x} = f(x)$
- 2. There is a trajectory x(t) that is confined to \mathcal{R}

Then, either \mathcal{R} is a closed orbit or x(t) converges to a closed orbit

 \Rightarrow For two-dimensional systems, each trajectory in a bounded region without equilibrium points converges to a limit cycle **Remarks**

- There is no such statement for systems with dimension > 2
- Higher-dimensional systems show new phenomena (see Marquez)

Klaus Schmidt Department of Mechatronic Engineering – Çankaya University