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Second-order Systems: Phase Plane Analysis

State Equations

ẋ =

[
ẋ1

ẋ2

]
=

[
f1(x1, x2)
f2(x1, x2)

]
= f (x), x(0) = x0, x ∈ R2 (1)

Phase Plane Analysis

Visualization of trajectories for various initial conditions in the x1-x2

plane

Assumption: IVP with x0 has unique solution x(t)

Assign vector with amplitude and direction of f (x ′) to each point x ′

⇒ Vector x ′ + f (x ′) at point x ′

⇒ Vector field diagram for whole x1-x2 plane

Vector field diagram indicates shape of trajectories that pass each
point x ′ ∈ R2
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Second-order Systems: Phase Plane Analysis

Example
Gap 1

Phase Plane Plot
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Second-order Systems: Linear Case

State Equations
ẋ = A x , x ∈ R2

⇒ Analyze different cases

Different Real Eigenvalues λ1 6= λ2 6= 0
Gap 2

Klaus Schmidt Department

Department of Mechatronic Engineering – Çankaya University



Second-order Systems: Linear Case

Real Eigenvalues λ1, λ2

Gap 3

Complex Eigenvalues λ1,2 = α± jβ
Gap 4
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Second-order Systems: Hartman – Grobman Theorem

Linearization

Consider linearization of ẋ = f (x) around x0

A(x0) =

[
∂f1
∂x1
|x0

∂f1
∂x2
|x0

∂f2
∂x1
|x0

∂f2
∂x2
|x0

]

Theorem (Hartman – Grobman Theorem)

Assume that the eigenvalues of A(x0) are not on the jω-axis. Then, for a
neighborhood U ∈ R2 with x0 ∈ U , there exists a continuous map
h : U → R2 with a continuous inverse h−1 that takes trajectories of the
nonlinear system ẋ = f (x) onto trajectories of the linear system
ẋ = A(x0)x.

⇒ If the eigenvalues of A(x0) do not lie on the imaginary axis, then the
type of the equilibrium point x0 can be deduced from A(x0)
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Second-order Systems: Linearization

Example
Gap 5
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Second-order Systems: Linearization

Example
Gap 6
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Oscillations: Definition

Definition

A nonlinear system is said to oscillate if it has a non-trivial periodic
solution, that is, a trajectory x(t) such for some T > 0

x(t + T ) = x(t), ∀t ≥ 0

Such trajectory x(t) is called a closed orbit and T is called the period.

Special Case: Linear System

ẋ = Ax

Oscillations if and only if the characteristic polynomial det(sI − A)
has purely imaginary eigenvalues
⇒ Amplitude depends on initial condition
⇒ Period depends on the eigenvalue location
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Oscillations: Linear System

Example
Gap 7

Practical Limitations

Purely imaginary eigenvalues are difficult to achieve

Either eigenvalues with negative real part (damped) or positive real
part (instable)
⇒ Oscillations are not structurally stable
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Oscillations: Limit Cylces for Nonlinear Systems

Example: Van der Pol Oscillator

ẋ1 = x2

ẋ2 = −x1 + µ(1− x2
1 )x2, µ > 0

Appears for example in electrical circuits with vacuum tubes

Additional dynamics µ(1− x2
1 )x2 compared to linear oscillator

⇒ For µ = 0, the oscillatory linear system is recovered

Phase plane analysis shows that all system trajectories converge to
limit cycle
⇒ Structural stability: convergence to periodic solution in case of
deviations from periodic solution
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Oscillations: Limit Cylces for Nonlinear Systems

Phase Plane Plot
Van-der Pol Oscillator
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⇒ One isolated orbit

Linear System
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⇒ Continuum of closed orbits
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Oscillations: Properties of Limit Cycles

Stable Limit Cycle

All trajectories converge toward the limit cycle
⇒ Van der Pol oscillator

Instable Limit Cycle

All trajectories diverge from the limit cycle
⇒ Van der Pol oscillator equation for µ < 0

Semi-stable Limit Cycle

All trajectories on one side of the limit cycle (inside or outside)
converge to the limit cycle while all trajectories on the other side of
the limit cycle diverge from the limit cycle
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Oscillations: Poincaré–Bendixson Theorem

Theorem

Let ẋ = f (x) be a two-dimensional autonomous system with a
continuously differentiable f in the domain D ⊆ R2 and assume that

1. R ⊆ D is a closed and bounded set without equilibrium points of
ẋ = f (x)

2. There is a trajectory x(t) that is confined to R
Then, either R is a closed orbit or x(t) converges to a closed orbit

⇒ For two-dimensional systems, each trajectory in a bounded region
without equilibrium points converges to a limit cycle
Remarks

There is no such statement for systems with dimension > 2

Higher-dimensional systems show new phenomena (see Marquez)
Klaus Schmidt Department

Department of Mechatronic Engineering – Çankaya University


