Nonlinear Systems and Control Lecture 2

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

Master Course in Electronic and Communication Engineering Credits (3/0/3)

Webpage: http://ECE564.cankaya.edu.tr

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Solution of Differential Equations

Equilibrium Points

First-order System Analysis

Department

Solution of Differential Equations: Nonlinear Systems

General Model

$$\dot{x} = f(t, x, u)$$
$$y = h(t, x, u)$$

- State vector: $x \in \mathbb{R}^n$; input: $u \in \mathbb{R}^m$; output: $y \in \mathbb{R}^p$
- Right-hand side (rhs): $f : \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$
- Output function: $h : \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$
- *n*: state space order; *m*: number of inputs; *p* number of outputs

Convention

- Autonomous system: $\dot{x} = f(x)$
- Non-autonomous system: $\dot{x} = f(t, x)$
- Autonomous system with inputs: $\dot{x} = f(x, u)$

Equilibrium Points

Solution of Differential Equations: Definition

Definition

Consider a non-autonomous system

$$\dot{x} = f(t, x).$$

For an interval $\mathcal{I} \subseteq \mathbb{R}$, the time function $x : t \mapsto x(t) : \mathcal{I} \to \mathbb{R}^n$ is a *solution* of (1) if x is differentiable on \mathcal{I} and fulfills (1) (that is, $\dot{x}(t) = f(t, x(t))$ for all $t \in \mathcal{I}$).

If (1) has an initial condition $x(t_0) = x_0$, then the combination of (1) and $x(t_0) = x_0$ is denoted as an *initial value problem* (IVP).

Remark: Direct solution for linear time-invariant systems

$$\dot{x} = f(t, x) = Ax, \quad x(0) = x_0 \Rightarrow x(t) = e^{At} x_0$$

Equilibrium Points

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Solution of Differential Equations

Solution of Differential Equations: Illustration

Example

$$\dot{x}=rac{1}{x},\quad x(0)=1$$

Gap 1

Department

First-order System Analysis

(1)

Solution of Differential Equations: Existence

Theorem (Peano)

Consider the non-autonomous system in (1). If f is continuous in a neighborhood $\mathcal{R} \subseteq \mathbb{R} \times \mathbb{R}^n$ of (t_0, x_0) , then there is at least one solution of the IVP.

Remark

• Neighborhood can be very small

Example

Gap 2

Department

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Solution of Differential Equations

Equilibrium Points

First-order System Analysis

Solution of Differential Equations: Existence

Example

Gap 3

Solution of Differential Equations: Lipschitz-continuity

Definition (Lipschitz-continuity)

A function $f : (t, x) \mapsto f(t, x) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is said to be *locally* Lipschitz-continuous with respect to x in the region $\mathcal{R} \subseteq \mathbb{R} \times \mathbb{R}^n$ if there is a constant L > 0 (Lipschitz-constant) such that

 $||f(t,\hat{x})-f(t, ilde{x})||\leq L||\hat{x}- ilde{x}||,orall(t,\hat{x}),(t, ilde{x})\in\mathcal{R}$

If $\mathcal{R} = \mathbb{R} \times \mathbb{R}^n$, then f is globally Lipschitz-continuous.

Example

Gap 4

Department

Gap 5

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Solution of Differential Equations

Equilibrium Points

First-order System Analysis

Solution of Differential Equations: Lipschitz-continuity

Example

Remark: Sufficient conditions for Lipschitz-continuity

- If $\frac{\partial f}{\partial x}$ is continuous in x, then f is locally Lipschitz-continuous
- If $\frac{\partial f}{\partial x}$ is continuous and bounded on $\mathbb{R} \times \mathbb{R}^n$, then f is globally Lipschitz-continuous

Solution of Differential Equations: Uniqueness

Theorem (Picard-Lindelöf)

Consider a non-autonomous system with initial condition $x(t_0) = x_0$ and let $\mathcal{R} \subseteq \mathbb{R} \times \mathbb{R}^n$ with $(t_0, x_0) \in \mathcal{R}$. If f is continuous in t on \mathcal{R} and f is Lipschitz-continuous in x on \mathcal{R} , then there is an interval $\mathcal{I} \subseteq \mathbb{R}$ with $t_0 \in \mathcal{I}$ such that the IVP has a unique solution on \mathcal{I} .

Remark

- If f is globally Lipschitz-continuous
 ⇒ There is a unique solution of the IVP for all times
- If f is locally Lipschitz-continuous everywhere in ℝ × ℝⁿ
 ⇒ Either there is a unique solution of the IVP for all times <u>or</u> IVP has finite escape time (see example)

Klaus Schmidt		
Department of Mechatronics En	ngineering – Çankaya	Universit

Solution of Differential Equations

Equilibrium Points

First-order System Analysis

Department

Solution of Differential Equations: Uniqueness

Example

Gap 6

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Equilibrium Points: Definition

Definition

Let $\dot{x} = f(t, x)$ be a non-autonomous system that is defined over a region $\mathcal{R} \in \mathbb{R} \times \mathbb{R}^n$. A point $x = x_e \in \mathcal{R}$ is called an *equilibrium point* of the system if $f(x_e) = 0$.

 \Rightarrow If the system state is $x_{\rm e}$, then it remains at $x_{\rm e}$ for all future times

 \Rightarrow Practical interpretation: an equilibrium point could for example be a set-point for set-point control

Example

Gap 7

Department

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Solution of Differential Equations

Equilibrium Points

First-order System Analysis

Equilibrium Points: Comments

Example

Gap 8

Nonlinear Systems expected in this Lecture

- Unique solution that exists for all times
- Potentially multiple equilibrium points

First-order System Analysis: Properties

State Equation

 $\dot{x} = f(x), \quad x(0) = x_0, \ x \in \mathbb{R}$

- Equilibrium points: $f(x_e) = 0$
- Solution x(t) of (2) is denoted as *trajectory*

Behavior Around Equilibrium Points

- Graphical analysis: plot \dot{x} over x
 - \Rightarrow Study value of derivative \dot{x} around each equilibrium point $x_{\rm e}$

Gap 9

Department

(2)

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

Solution of Differential Equations

Equilibrium Points

First-order System Analysis

First-order Systems: Observations

Gap 10

General Observation

Dynamics of first-order system is dominated by behavior around equilibrium points

- Either trajectories approach equilibrium point
- Or trajectories diverge from equilibrium point \Rightarrow No oscillations for first-order systems
- Generalization of result that is known for linear systems