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Master Course in Electronic and Communication Engineering
Credits (3/0/3)

Webpage: http://ECE564.cankaya.edu.tr

Klaus Schmidt Department

Department of Mechatronics Engineering – Çankaya University
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Input/Output Linearization: State Transformation

Theorem (State Transformation)

Assume that the nonlinear system has a relative degree of r ≤ n around
the point x ∈ D. Then, there exist functions tr+1(x), . . . , tn(x) such that

z = t(x) :=



h(x)
Lf h(x)

...

Lr−1
f h(x)
tr+1(x)

...
tn(x)


=



z1

z2
...
zr
η1
...

ηn−r


is a local diffeomorphism around x, that is, t(x) is continuously
differentiable and its inverse t−1 uniquely exists on D and is differentiable.
tr+1(x), . . . , tn(x) can be chosen such that Lg tr+1 = · · · = Lg tn = 0.
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Input/Output Linearization: Helicopter Example

Example
Gap 1
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Input/Output Linearization: Helicopter Example

Computation
Gap 2
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Input/Output Linearization: Helicopter Example

Computation
Gap 3
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Flatness: Recall

Byrnes-Isidori Canonical Form (BIC)

ż1 = z2
...

żr = b(z) + a(z)u

 Chain of
integrators

η̇1 = q1(z)
...

η̇n−r = qn−r (z)

 internal
dynamics

y = z1

⇒ Linearizing state feedback:

u =
1

a(z)
(w − b(z))

⇒ No direct input for internal dynamics

Block Diagram
Gap 4
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Flatness: Definition

Special Case of the BIC: n = r

ż1 = z2

...

żn = b(z) + a(z)u

y = z1

Block Diagram
Gap 5

Remarks

No internal dynamics

The system is called flat and yf = z1 is the flat output of the system

The system can be converted in a pure chain of integrators by the

state feedback u =
1

a(z)
(v − b(z))
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Flatness: Pendulum Example

State Equations[
θ̇
ω̇

]
=

[
ω

− g
l2

sin(θ)− kω

]
+

[
0
δ

]
M

y = θ − π

2

Angle θ, length l , input torque M

θ
−kω

mg

l

M

Gap 6
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Flatness: Set-point Control

Stabilizing State Feedback

Linearizing state feedback: u =
v − b(z)

a(z)

⇒ y (n) = b(z) + a(z)
1

a(z)
(v − b(z)) = v

Linear state feedback: v = −k1z1 − k2z2 − · · · − knzn for ki ∈ R

⇒ żn = y (n) = v = −k0z1 − k1z2 − · · · kn−1zn

Linear differential equation in y

⇒ y (n) + kn−1y
(n−1) + · · ·+ k1ẏ + k0y = 0

⇒ Asymptotically stable equilibrium point at z = 0 if the
polynomial sn + kn−1s

n−1 + · · ·+ k1s + k0 is Hurwitz
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Flatness: Set-point Control

Block Diagram
Gap 7

Klaus Schmidt Department

Department of Mechatronics Engineering – Çankaya University
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Flatness: Set-point Control

Stabilizing Feedback in z-Coordinates

u =
1

a(z)
(v − b(z)) =

1

a(z)
(−kn−1zn − · · · − k1z2 − k0z1 − b(z))

Stabilizing Feedback in Original Coordinates

Recall x = t−1(z) and zi = Li−1
f h(x)

u =
1

a(t−1(z))
(−kn−1L

n−1
f h(x)−· · ·−k1Lf h(x)−k0h(x)−b(t−1(z)))

⇒ Asymptotically stable equilibrium point at x = t−1(0)

Remarks

Linear system behavior in z-coordinates

Nonlinear system behavior in x-coordinates!
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Flatness: Set-point Control Example

Pendulum
Gap 8
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Flatness: Set-point Control Example

Simulation: z-Coordinates
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⇒ Stabilization of z =

[
0
0

]

Simulation: Original Coordinates
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⇒ Stabilization of t−1(z) =

[
π
2
0

]
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Feedforward Control: Properties

Recall from Input/Output Linearization

z = t(x), x = t−1(z) with t(0) = 0 and also t−1(0) = 0

yf = z1 = h(x), ẏf = Lf h = z2, ÿf = L2
f h = z3, . . .

Properties in Case of Flatness

x = t−1(z) = ϕx(yf , ẏf , . . . , y
(n−1)
f )

⇒ x can be expressed in terms of n − 1 flat output derivatives

u = ϕu(yf , ẏf , . . . , y
(n)
f )

⇒ u can be expressed in terms of n flat output derivatives

Gap 9
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Feedforward Control: Trajectory Tracking

Gap 10

Trajectory Tracking

Assume given desired trajectory yd(t) for system output

⇒ Input u = ϕu(yd , ẏd , . . . , y
(n)
d ) ensures that system tracks yd(t)

Feedforward Architecture
Gap 11
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Feedforward Control: Example

Pendulum
Gap 12
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Feedforward Control: Example

Simulation with Exact Model
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Feedforward with exact model

⇒ Exact tracking as designed

Simulation with Uncertain Model
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Feedforward
Feedforward and Feedback

⇒ Feedback is essential in case of
uncertainties/disturbances
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Feedforward Control: Combination with Feedback

Feedforward Architecture with Feedback
Gap 13

Stabilization of Output Error

y (n) − y
(n)
d︸ ︷︷ ︸

e(n)

= b(z)−a(z)u−y (n)
d = b(z)−a(z)(

y
(n)
d − b(z) + v

a(z)
)−y (n)

d = v

Choose v = −kn−1

e(n−1)︷ ︸︸ ︷
(y (n−1) − y

(n−1)
d )− · · · − k1

ė︷ ︸︸ ︷
(ẏ − ẏd)−k0

e︷ ︸︸ ︷
(y − yd)

⇒ Stable error dynamics: e(n) − kn−1e
(n−1) − · · · − k1ė − k0e = 0 if

sn + kn−1s
n−1 + · · ·+ k1ṡ + k0 is Hurwitz
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Input/Output Linearization: General Setup

Relative Degree r < n
ż1 = z2

...

żr = b(z) + a(z)u

η̇ = q(z)

y = z1

Helicopter Example (r = 2)
ż1 = z2

ż2 = −g tan z3 −
1

M cos z3
u

ż3 = M cos z3z4 − Lz2

ż4 = −lg tan z3 −M cos z3(z4 − Lz2)2 tan z3

y = z1

Input/Output Relation

Input/output behavior can be written as y (r) = b(z) + a(z)u
⇒ Analogous to case of flatness

Internal dynamics η̇ = q(z) cannot be controlled by input u
⇒ Stability analysis of internal dynamics is required
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Input/Output Linearization: Set-point Control

Input/Output Behavior

Asymptotic stabilization of z1 = · · · = zr = 0 analogous to flatness

⇒ u =
1

a(z)
(−k0z1 − k1z2 − · · · − kr−1zr − b(z))

Analysis of Internal Dynamics

Write internal dynamics as η̇ = q(z) = q(z1, . . . , zr , η)

For asymptotic stabilization of z1 = · · · = zr = 0
⇒ Null-dynamics: η̇ = q(0, . . . , 0, η)

Asymptotically Stable Set-point Control

Use asymptotically stabilizing feedback law for input/output behavior

Verify asymptotic stability of null-dynamics
⇒ Use methods discussed in the lecture (linearization, Lyapunov
stability and extensions, passivity)
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Flatness Set-point Control Feedforward Control Input/Output Linearization

Input/Output Linearization: Helicopter Example

Input/output Behavior
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⇒ Asymptotic stability of
z1 = z2 = 0

Internal Dynamics
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⇒ Stable internal dynamics (but not
asymptotically stable)
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Input/Output Linearization: Feedforward

Input/output Behavior

Feedforward computation analogous to flatness

⇒ u = ϕ(yd , ẏd , . . . , y
(r)
d )

Analysis of Internal Dynamics

Consider yd and its derivatives as input to the internal dynamics

Write internal dynamics as η̇ = q(yd , ẏd , . . . , y
(r−1)
d , η)

⇒ Stability if internal dynamics are input-to-state stable (see
Khalil’s book for exact definition)

Verification of input-to-state stability usually difficult
⇒ Perform simulation of internal dynamics to verify system stability
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