Flatness	Set-point Control	Feedforward Control	Input/Output Linearization
_	Nonlinear	Systems and Contr Lecture 12	rol
	Associate	Prof. Dr. Klaus Schmidt	
	Department of Mechan Master Course in Electr (tronics Engineering – Çankaya U ronic and Communication Credits (3/0/3)	Jniversity n Engineering
	Webpage: htt	p://ECE564.cankaya.ed	u.tr
Klaus Schi	nidt		Department

Flatness

Set-point Control

Feedforward Control

Input/Output Linearization

Input/Output Linearization: State Transformation

Theorem (State Transformation)

Department of Mechatronics Engineering - Çankaya University

Assume that the nonlinear system has a relative degree of $r \leq n$ around the point $\overline{x} \in \mathcal{D}$. Then, there exist functions $t_{r+1}(x), \ldots, t_n(x)$ such that

$$z = t(x) := \begin{bmatrix} h(x) \\ L_f h(x) \\ \vdots \\ L_f^{r-1} h(x) \\ \vdots \\ t_{r+1}(x) \\ \vdots \\ t_n(x) \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_r \\ \eta_1 \\ \vdots \\ \eta_{n-r} \end{bmatrix}$$

is a local diffeomorphism around \overline{x} , that is, t(x) is continuously differentiable and its inverse t^{-1} uniquely exists on \mathcal{D} and is differentiable. $t_{r+1}(x), \ldots, t_n(x)$ can be chosen such that $L_g t_{r+1} = \cdots = L_g t_n = 0$. Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

1			
aus Schmidt epartment of Mec	chatronics Engineering – Çankaya U	Iniversity	Depar
	Sat point Control	Foodforward Control	Input /Output Lincovi
Computa	LION		<u> </u>
			Gap

Input/Output Linearization: Helicopter Example

Example

Feedforward Control

Gap 1

-			
F.	Ia	tn	ess

Feedforward Control

Input/Output Linearization: Helicopter Example

Computation

Gap 3

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Flatness: Set-point Control

Set-point Control

Stabilizing State Feedback

• Linearizing state feedback: $u = \frac{v - b(z)}{a(z)}$

$$\Rightarrow y^{(n)} = b(z) + a(z)\frac{1}{a(z)}(v - b(z)) = v$$

• Linear state feedback: $v = -k_1z_1 - k_2z_2 - \cdots - k_nz_n$ for $k_i \in \mathbb{R}$

$$\Rightarrow \dot{z}_n = y^{(n)} = v = -k_0 z_1 - k_1 z_2 - \cdots + k_{n-1} z_n$$

• Linear differential equation in y

$$\Rightarrow y^{(n)} + k_{n-1}y^{(n-1)} + \cdots + k_1\dot{y} + k_0y = 0$$

 \Rightarrow Asymptotically stable equilibrium point at z = 0 if the polynomial $s^n + k_{n-1}s^{n-1} + \cdots + k_1s + k_0$ is Hurwitz

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Flatness	Set-point Control	Feedforward Control	Input/Output Linearization
Flatness	: Set-point Conti	rol	
Block Di	agram		
	agram		Gap 7
L			

Flatness: Set-point Control

Stabilizing Feedback in *z*-Coordinates

$$u = \frac{1}{a(z)}(v - b(z)) = \frac{1}{a(z)}(-k_{n-1}z_n - \cdots - k_1z_2 - k_0z_1 - b(z))$$

Feedforward Control

Stabilizing Feedback in Original Coordinates

• Recall $x = t^{-1}(z)$ and $z_i = L_f^{i-1}h(x)$

$$u = \frac{1}{a(t^{-1}(z))} (-k_{n-1}L_f^{n-1}h(x) - \dots - k_1L_fh(x) - k_0h(x) - b(t^{-1}(z)))$$

 \Rightarrow Asymptotically stable equilibrium point at $x = t^{-1}(0)$

Remarks

- Linear system behavior in z-coordinates
- Nonlinear system behavior in x-coordinates!

Klaus Schmidt Department of Mechatronics Engineering - Çankaya University

Flatness

Set-point Control

Feedforward Control

Input/Output Linearization

Department

Gap 8

Flatness: Set-point Control Example

Pendulum

Flatness

Feedforward Control: Properties

Recall from Input/Output Linearization

• z = t(x), $x = t^{-1}(z)$ with t(0) = 0 and also $t^{-1}(0) = 0$

•
$$y_f = z_1 = h(x), \ \dot{y}_f = L_f h = z_2, \ \ddot{y}_f = L_f^2 h = z_3, \ \dots$$

Properties in Case of Flatness

• $x = t^{-1}(z) = \varphi_x(y_f, \dot{y}_f, \dots, y_f^{(n-1)})$

 $\Rightarrow x$ can be expressed in terms of n-1 flat output derivatives

•
$$u = \varphi_u(y_f, \dot{y}_f, \dots, y_f^{(n)})$$

 \Rightarrow *u* can be expressed in terms of *n* flat output derivatives

Gap 9

eedtorw	vard Control: Tra	ajectory Tracking	
			Gap 10
Traiector	v Tracking		
	me given desired trai	ectory $v_{d}(t)$ for system	output
\Rightarrow In	put $u = \varphi_u(y_d, \dot{y}_d,$	$(1, y_d^{(n)})$ ensures that sy	stem tracks $y_d(t)$
Feedforw	ard Architecture	, s a , s	<i>y</i> u(<i>y</i>)
			Gap 11
aus Schmidt	_		Departm
partment of Me	chatronics Engineering – Çankaya U	Iniversity	
itness	Set-point Control	Feedforward Control	Input/Output Linearizat
	·		. , .
adfaru	uard Control: Ex	ampla	
eeurorw		ampie	
Pendulun	n		
			Gap 12

Department of Mechatronics Engineering - Çankaya University

Flatness

Set-point Control

Feedforward Control

Input/Output Linearization

Input/Output Linearization: Set-point Control

Input/Output Behavior

• Asymptotic stabilization of $z_1 = \cdots = z_r = 0$ analogous to flatness

$$\Rightarrow u = \frac{1}{a(z)}(-k_0z_1 - k_1z_2 - \cdots - k_{r-1}z_r - b(z))$$

Analysis of Internal Dynamics

- Write internal dynamics as $\dot{\eta} = q(z) = q(z_1, \dots, z_r, \eta)$
- For asymptotic stabilization of $z_1 = \cdots = z_r = 0$ \Rightarrow Null-dynamics: $\dot{\eta} = q(0, \dots, 0, \eta)$

Asymptotically Stable Set-point Control

- $\bullet~$ Use asymptotically stabilizing feedback law for input/output behavior
- Verify asymptotic stability of null-dynamics
 - \Rightarrow Use methods discussed in the lecture (linearization, Lyapunov stability and extensions, passivity)

Input/Output Linearization: General Setup

Flatness

Input/Output Linearization: Feedforward

Input/output Behavior

• Feedforward computation analogous to flatness

$$\Rightarrow u = \varphi(y_d, \dot{y}_d, \dots, y_d^{(r)})$$

Analysis of Internal Dynamics

- Consider y_d and its derivatives as input to the internal dynamics
- Write internal dynamics as η = q(y_d, y_d, ..., y_d^(r-1), η)
 ⇒ Stability if internal dynamics are input-to-state stable (see Khalil's book for exact definition)
- Verification of input-to-state stability usually difficult
 ⇒ Perform simulation of internal dynamics to verify system stability