Nonlinear Systems and Control Lecture 10

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

Master Course in Electronic and Communication Engineering Credits (3/0/3)

Webpage: http://ECE564.cankaya.edu.tr

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Feedback Connections

Passivity-Based Control

PCHD Systems

Department

Feedback Connections: Notation

Block Diagram

Gap 1

State Equations

$$\dot{x}_1 = f_1(x_1, e_1)$$

 $\dot{y}_1 = h_1(x_1, e_1)$
 $e_1 = u_1 - y_2$
 $\dot{x}_2 = f_2(x_2, e_2)$
 $y_2 = h_2(x_2, e_2)$
 $e_2 = u_2 + y_1$

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Feedback Connections: Overall SystemGap 2OutputDerivationGap 2State EquationsWell-defined Connection if $\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = f(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix})$ $e_1 = u_1 - h_2(x_2, e_2)$ $g_2 = u_2 + h_1(x_1, e_1)$ $e_2 = u_2 + h_1(x_1, e_1)$ $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = h(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} u_1 \\ u_2 \end{bmatrix})$ has unique solution for $\begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$ Mass SchnidtDepartment of Mechatronics Engineering - Cankaya University

Feedback Connections

Passivity-Based Control

Feedback Connections: Example

Magnetic Valve

Gap 3

PCHD Systems

Feedback Connections: Asymptotic Stability

Theorem (Passivity in Feedback Connections)

Consider the feedback connection of two nonlinear systems as described before and assume that f(x, u) is locally Lipschitz, h(x, u) is continuous, f(0,0) = 0 and h(0,0) = 0. If both nonlinear systems are passive, then the feedback connection of both systems is also passive.

Proof

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Feedback Connections

Passivity-Based Control

PCHD Systems

Department

Gap 4

Feedback Connections: Passivity

Theorem (Asymptotic Stability in Feedback Connections)

Consider the feedback connection of two nonlinear systems as described before and assume that f(x, u) is locally Lipschitz, h(x, u) is continuous, f(0,0) = 0 and h(0,0) = 0. If both nonlinear systems are either strictly passive or output strictly passive and zero-state detectable, then the origin of the feedback system $\dot{x} = f(x, 0)$ is asymptotically stable.

Proof

Feedback Connections: \mathcal{L}_2 -Stability

Theorem (\mathcal{L}_2 -Stability in Feedback Connections)

Consider the feedback connection of two nonlinear systems. Assume that f(x, u) is locally Lipschitz, h(x, u) is continuous, f(0, 0) = 0, h(0, 0) = 0. Assume that both nonlinear systems are output strictly passive $(e_1^T y_1 \ge \dot{V}_1 + \delta_1 y_1^T y_1$ for the first system and $e_2^T y_2 \ge \dot{V}_2 + \delta_2 y_2^T y_2$ for the second system). Then, the feedback connection is \mathcal{L}_2 -stable and its \mathcal{L}_2 -gain is less than or equal to $1/\min{\{\delta_1, \delta_2\}}$.

Proof

Gap 6

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Feedback Connections

Passivity-Based Control

PCHD Systems

Department

Feedback Connections: \mathcal{L}_2 -Stability Example

Magnetic Valve

Passivity-Based Control: Feedback Loop

Block Diagram

Gap 8

Conditions

- f is locally Lipschitz and f(0,0) = 0
- h is continuous and h(0,0) = 0

Design Goals

- Asymptotically stabilize passive system by feedback control
- Set asymptotically stable equilibrium point by feedback control

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Feedback Connections

Passivity-Based Control

PCHD Systems

Department

Passivity-Based Control: Asymptotic Stabilization

Theorem

Consider the feedback loop from above. Assume that the nonlinear system is passive with a radially unbounded positive definite storage function V(x) and zero-state detectable. Let $\varphi(y)$ be a function such that $\varphi(0) = 0$ and $y^T \varphi(y)$ is positive definite. Then, the origin can be globally asymptotically stabilized by the feedback law $u = -\varphi(y)$.

Proof

Passivity-Based Control: Example	
Interpretation	
 Passive system can be made output strictly passive in order to achieve asymptotic stability 	
• Excess passivity is determined by choice of $arphi$	
Magnetic Valve	
	Gap 10
Klaus Schmidt Department of Mechatronics Engineering – Çankaya University	Department

Feedback Connections

Passivity-Based Control

PCHD Systems

PCHD Systems: Definition

Port-Controlled Hamiltonian System with Dissipation (PCHD)

$$\dot{x} = f(x, u) = (J(x) - S(x)) \frac{\partial V(x)}{\partial x}^{T} + G(x)u$$

- State $x \in \mathbb{R}^n$
- Input $u \in \mathbb{R}^m$
- Storage function V(x) with V(0) = 0
- Input matrix G(x)
- Skew symmetric matrix $J(x) = -J^T(x)$
- Symmetric matrix $S(x) = S^T(x)$ positive semi-definite

\Rightarrow Subclass of nonlinear systems that is suitable for modeling various mechanical systems

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

PCHD Systems: Example

Magnetic Valve with Input Current (instead of Voltage)

- $u = i_L^2$
- $z_1 = x_1, z_2 = mx_2$

State Equations

$$\dot{z}_1 = \frac{1}{m} z_2$$

$$\dot{z}_2 = \frac{1}{2} \frac{\partial L(z_1)}{\partial z_1} u - cz_1 - \frac{d}{m} z_2$$

Energy Function

$$V(x) = \frac{1}{2}(cz_1^2 + \frac{1}{m}z_2^2)$$

Klaus Schmidt Department of Mechatronics Engineering – Çankaya University

Feedback Connections

Passivity-Based Control

PCHD Systems: Passivity

Output Choice

$$y = G(x)^T \frac{\partial V(x)^T}{\partial x}$$

Computation

$$\dot{V}(x) = \frac{\partial V(x)}{\partial x} \left((J(x) - S(x)) \frac{\partial V(x)^{T}}{\partial x} + G(x)u \right)$$
$$= \underbrace{\frac{\partial V(x)}{\partial x} J(x) \frac{\partial V(x)^{T}}{\partial x}}_{=0} - \underbrace{\frac{\partial V(x)}{\partial x} S(x) \frac{\partial V(x)^{T}}{\partial x}}_{\text{pos. semi-def.}} + \underbrace{\frac{\partial V(x)}{\partial x} G(x)}_{y^{T}} u$$

Passivity of the System

$$y^{T}u = \dot{V}(x) + \frac{\partial V(x)}{\partial x}S(x)\frac{\partial V(x)^{T}}{\partial x} \ge \dot{V}(x)$$

Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

PCHD Representation

PCHD Representation	
	Gap 11
	Department

PCHD Systems

Department

PCHD Systems: Passivity-based Control **Goal** • Achieve asymptotic stability of a target equilibrium point $x_t \neq 0$ **Synthesis Procedure** • Define targeted (autonomous) PHCD representation $\dot{x} = (J_t(x) - S_t(x)) \frac{\partial V_t^T(x)}{\partial x}$ • Choose $V_t(x)$ such that $V_t(x_t) = 0$ and $V_t(x) > 0$ otherwise • Choose damping injection matrix $S_d(x)$ positive semi-definite • Use feedback $G(x)u = -G(x)S_d(x)G(x)^T \frac{\partial V_t^T}{\partial x} + (J_t(x) - S_t(x)) \frac{\partial V_t^T(x)}{\partial x} - (J(x) - S(x)) \frac{\partial V^T(x)}{\partial x}$ $\Rightarrow x_t$ is asymptotically stable equilibrium point of the closed-loop system $\Rightarrow S_d(x)$ influences speed of convergence Klaus Schmidt Department Department of Mechatronics Engineering - Çankaya University

Feedback Connections

Passivity-Based Control

PCHD Systems

PCHD Systems: Feedback Control Example

Magnetic Valve Example