Exercise Sheet 3: Phase Plane Analysis

Problem 5:

a. Consider the second-order autonomous system $\dot{x} = f(x)$ and its linearization $A(x_e)$ around an equilibrium point x_e . For each type of the equilibrium point of the linear system $\dot{x} = A(x_e)x$, determine if the equilibrium point x_e of the nonlinear system is stable or instable.

Equilibrium point of $\dot{x} = A(x_{\rm e})x$	Equilibrium point of $\dot{x} = f(x)$
stable node	
instable node	
stable focus	
instable focus	
center	
saddle	

b. Show that the equilibrium point $x_e = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ of the following nonlinear system is instable.

$$\dot{x}_1 = -x_1 + x_2^2$$
$$\dot{x}_2 = x_2^3 + x_1^6$$

Problem 6:

Consider the following autonomous system

$$\dot{x}_1 = x_1 - x_1^2 + x_2 \dot{x}_2 = -x_2$$

- **a.** Sketch the phase plane plot of the above system in the range $-1.5 \le x_1 \le 1.5$ and $-1.5 \le x_2 \le 1.5$
- **b.** Use the phase plant plot to decide about stability/instability of the equilibrium points of the system.
- ${\bf c.}$ Use the Hartman-Grobman Theorem to verify your result in ${\bf b.}$

Problem 7:

Assume that a nonlinear system $\dot{x} = f(x)$ with the initial condition x_0 is given and it is known that the solution fulfills ||x(t)|| < r. What can you say about the behavior of the solution x(t) depending on the dimension of the system and the existence of equilibrium points of the system?